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1 Introduction

In many markets, potential consumers only have partial information about the
product they are considering to buy. Information provision therefore plays a cen-
tral role in shaping trade outcomes: as consumers learn more, they make better
purchasing decisions, directly affecting welfare. When such learning occurs at
scale, it alters the structure of market demand, prompting the seller to adjust their
prices. Nowadays, online platforms are an important source of information to
consumers. By analysing data from past interactions, browsing histories, and con-
sumer characteristics, platforms can provide information not available elsewhere.
Through personalized recommendations and targeted advertising, they influence
consumers’ beliefs and, ultimately, market outcomes. Yet, platforms are rarely
the sole source of information. Instead consumers typically already have some
understanding of their own preferences when engaging with the platform. This
information may be the result of consulting independent online reviews, learning
from prior purchases etc. In addition, platforms often do not just hold informa-
tion about consumers’ preferences, but also regarding what consumers already
know. Equipped with such knowledge platforms are able to engage in targeted
information design by tailoring information provision to consumers knowledge
outside their control. A natural question is then how platforms engage in such
targeting and —more generally— how they provide information in the presence
of outside information. While there is an extensive literature investigating how
information provision shapes market outcomes, it is standard within this literature
to focus on information designers with full control. The designer can decide on
any level of information provision ranging from no to full information implying
that the designer is the only source of information to consumers. Instead, I allow
consumers to arrive to the market partially informed.

In my model one seller sells a good to consumers through a platform. The
consumer is partially informed, but still uncertain about their preferences for the
offered product. The platform decides how to provide additional information to
the consumer by committing to a policy that determines how consumers receive
information conditional on their true valuations and on outside information. Prices
are set by the seller. The seller knows how information is provided to consumers

but cannot condition prices on the realised recommendations. In this context, I



study how a platform should provide information to consumers. I consider dif-
ferent objectives for the platform including seller profit and consumer surplus

maximization and ask how total welfare changes with the platforms objective.

Allowing for the possibility of outside information, however, raises a few method-
ological challenges. In particular, accounting for this important feature of the
environment, cannot be modelled as a mere relabelling of the state space. It is not
enough to treat consumer valuation and outside information as a new state and
then apply standard techniques since this overlooks the structure of the problem.
In my setting, the platform observes the consumer’s realized outside information,
whereas the seller does not. This asymmetry links the information design prob-
lems across consumers with different outside information: the platform maximizes
over the overall induced demand function rather than rather solving separate
information design problems for each consumer type.

In principle, this requires solving an optimization problem with a potentially
infinite-dimensional constraint—each posterior under outside information must be
more informative after the platform’s disclosure. Building on Ennuschat (2025)!, T
simplify this problem under an assumption on the structure of outside information
that ensures posteriors are ordered and non-intersecting. Under this condition,
the platform’s problem can be reformulated as an optimization over the induced

demand function.

With this, I study the platforms optimal disclosure rule for different objectives. A
platform aiming to maximize revenue will design information that makes demand
inelastic across a wide range of valuations, enabling the seller to extract more
surplus. By contrast, a platform maximizing consumer surplus induces demand
that is unit-elastic over some range of valuations, leaving the seller indifferent
among multiple prices. This parallels Roesler and Szentes (2017), who characterize
buyer-optimal information when no outside information exists. They focus on
characterizing buyer optimal disclosure since absent outside information, the seller
extracts all surplus without any revelation. Then, along the Pareto Frontier, the
design of information only governs the distribution of welfare but not its level.

When outside information is present, however, efficiency varies along the Pareto
frontier; moving toward the seller-optimal outcome reduces total welfare. Because
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outside information alters the set of feasible demand functions that the platform
can induce—rather than merely relabelling the state space—the resulting welfare
implications cannot be replicated by a simple redefinition of the state. Accounting
for such information qualitatively alters the insights obtained in information-design

problems.

To understand this misalignment of total surplus and profits, take the extreme
objective where the platform maximizes the seller’s profit. For each possible price,
consider the maximum quantity demanded the platform can generate through
disclosure. Then disclosure reveals additional information to consumers, who,
based solely on their outside information, would choose not to buy. As the price
rises, this maximal demand necessarily falls, since convincing consumers to pur-
chase by revealing information becomes harder. But the seller still benefits from
higher prices if the resulting revenue gain outweighs the loss in demand. Yet, the
reduction in trade means that some mutually beneficial transactions no longer
occur leading to lower efficiency. Models studying market segmentation, which
can be thought of as information revelation to the seller instead of the buyer, em-
phasize that, consumer optimal segmentation does not need to come at a cost of
efficiency Bergemann et al. (2015); Haghpanah and Siegel (2023); Bergemann et al.
(2025a). However, under outside information and when information is revealed to
consumers, I establish alignment in a stronger sense: total surplus decreases as we

move away from consumer towards seller-optimal disclosure.

The increasing importance of data as an economic resource has renewed interest
in the effects of information provision on market outcomes. A plethora of papers
investigates this question under different assumptions on the market structure
and varies which side of the market receives information (Roesler and Szentes,
2017; Bergemann et al., 2015; Haghpanah and Siegel, 2023; Ravid et al., 2022; Berge-
mann et al., 2025a; Armstrong and Zhou, 2022; Elliot et al., 2025). A maintained
assumption of these papers is that information is only provided by a single source.
Results allowing for privately informed receivers are more sparse and often need
additional assumptions on the environment to ensure tractability (Kolotilin et al.,
2017; Guo and Shmaya, 2019; Candogan and Strack, 2023; Guo et al., 2025).

With respect to the literature, this paper makes three points. Instead of consider-
ing full control information design, it introduces an information environment, where

consumers hold outside information which is not controlled by but observable



to the platform. This setting reflects digital markets, where reviews or browsing
histories are public and platforms retain the ability to condition disclosure on them.
Second, it shows that allowing for outside information reveals a misalignment of
total surplus and profit maximization. Third, it applies methodological insights
from Ennuschat (2025)? to an economically relevant environment demonstrating
how these methods yield tractable welfare comparisons when outside information

shapes the feasible set of demand functions.

The remainder of this paper proceeds as follows. Section 2 introduces the model.
In section 3 I characterize seller and buyer optimal learning respectively as well
as the set of welfare outcomes. I also consider environments where outside in-
formation is not monotone non-overlapping and shows that the relaxed program
characterizes a robust version of the set of welfare outcomes in general environ-

ments. Section 4 reviews the literature and Section 5 concludes.

2 Model

I consider a simple model of trade intermediated by a platform where a single buyer
and seller interact through a platform. The buyer’s valuation for the offered good
is uncertain and imperfectly known to her. Before purchasing, the buyer receives
additional information from the platform, which strategically decides how much
information to provide. The seller produces at zero marginal cost and chooses a

price after observing how the platform provides information to consumers.

Buyer’s Purchasing Problem The buyer (she) is risk-neutral with valuation
v € V = [0,1] where v ~ Fy. She is partially informed of her valuation. Her
outside information is represented by the signalling structure S° = (5%, ¢°)
where ¢ : V. — A(S°) is a mapping from valuations into (possibly random)
signal realisations. A signalling structure S© can equivalently be described by
the distribution over posterior beliefs 70 € A(A(V)) it induces (Blackwell, 1953;
Terstiege and Wasser, 2023). A posterior g© € A(V) describes the probability the
agent attaches to different valuations after seeing the signal realisation s°. Then

each signal realisation s© € SO induces a posterior g© and the probability of each
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posterior is given by the probability of the signal realisation that induces it.> Due
to risk-neutrality, the buyers purchasing decision only depends on the mean of
her posterior q©, denoted by E,,0(v) = ,0. The probability distribution over
posteriors, T°, induces a distribution over those posterior means, G° € A(V).

I impose the following assumption on the outside information:

Assumption 1. Outside information is minimal: S© is the unique least informative
signalling structure inducing the posterior mean distribution G°. Equivalently SC is a
garbling of any S°’ that also induces G© .*

When outside information is minimal, any other signalling structure that induces
the same law of posterior means is Blackwell more informative. Such a non-minimal
structure conveys extra detail beyond the posterior mean which is payoff-irrelevant
to the buyer. Intuitively, you can think of minimal outside information as a “mean-
only” signalling structure: it reveals the posterior mean, the buyer’s payoff-relevant
statistic, and nothing else.

To build better understanding of what minimality entails the following provides
an equivalent geometric characterization in terms of distribution of posteriors t
that will be used later one (Ennuschat, 2025).

Definition 1 (Monotone Non-Overlapping Experiment). An experiment is monotone
non-overlapping if

i) T is convex: for all q € supp(t) we have that v € supp(q) whenever v €
co(supp(q))’ forallv € V

ii) 1 is non-overlapping: for all q,q" € supp(t) such that q # q" we have that

supp(q) Nsupp(q’) € ext(q) Next(q’)

where ext(q) = {min(supp(q)), max(supp(q))}

A signalling structure corresponds to a monotone non-overlapping experiment

if (7) the support of each posterior is convex and (ii) whenever the buyer attaches

Blackwell (1953) shows the equivalence for finite state spaces and Terstiege and Wasser (2023)
show this continues to hold for infinite state spaces.
%A signalling structure S’ is a garbling of S , if there exists a Markov kernel y : S — A(S’)

o’'(s" | w) = / Sy(s’ | s)o(s | w)ds

5Let co(A) denote the convex hull of the set A.



positive probability to some valuation under multiple posterior, the valuation
must always be either the highest or lowest valuation the buyer conceives of. Two
important special cases are (i) when valuations are binary (then any signalling
structure is monotone non-overlapping) and (i7) when outside information is
monotone partitional.® Monotone partitional signalling structures are commonly
encountered in the literature (Onuchic and Ray, 2023; Mensch, 2021; Ivanov, 2021).
They are practical, easy to implement and optimal in many information design
problems (Kolotilin et al., 2024; Dworczak and Martini, 2019). This kind of coarse,
tiered information is natural in many settings. Consider a good that comes in a base
specification and has tiered add-ons, meaning that a premium product will have all
features a plus product has. A monotone partitional signalling structure then tells

/a4

the buyer whether the good comes in "base”, “plus” or “premium” specification.

Platform’s Information Policy The platform (it) intermediates trade by providing
information to the buyer. It can condition her information policy on the valuation

7 as well as the realised outside information s©. Notice that when outside infor-

v
mation is monotone partitional, the second requirement becomes redundant: by
knowing the buyer’s valuation the platform knows the signal realisation. Formally,

the platform chooses a signalling structure:
SP =(SP,6P) where 6P : V x S° — A(SP)

In words, 6P maps valuations and signal realisations under outside information
into (possibly random) messages. As before this can equivalently be described by
the distribution over posterior beliefs 72 € A(A(V)). Let tgo denote the mean of
posterior g° and let GP € A(V) denote the induced posterior mean distribution.

A platform designing information cannot freely induce any distribution °.
Instead, it is constrained by the existence of outside information as well as her own
knowledge: the buyer must be at least as informed as they were under outside
information and at most fully informed.

By Blackwell’s Theorem, a signal structure SP is more informative than a signal

structure SO iff the distribution of posterior beliefs " is a mean-preserving spread

®Qutside information is monotone partitional whenever 3P : [0,1] — [0, 1] where P is weakly
increasing and we have that s9(v) = s9(v’) whenever P(v) = P(v’) while s°(v) # s°(v’) if
P(v) # P(v').

"The analysis would equally go through when the platform can provide more accurate information
at every posterior under outside information.



of the distribution of posterior beliefs 7°.% On the other extreme, the platform can
at most fully reveal what she knows about the buyers’ valuation. Let F{ denote the
distribution over degenerate beliefs induced by full revelation. A signal structure
SP is less informative than full information, iff ) is a mean preserving spread the
distribution of posterior beliefs mean-preserving spread of t°.

These two feasibility constraints can be understood as follows. Think of outside

information 7©

as a two-stage lottery, where the first stage describes the probabili-
ties of different posteriors and the second stage describes the probabilities attached
to different valuations under the respective posterior. Additional revelation by
the platform splits each posterior §°—the second stage lottery— into multiple
new posteriors. We now have a three-stage lottery where the compound lottery of
second and third stage need to correspond to ¢°. This is exactly what imposing
that 0 is a mean-preserving spread of 7° requires. Conversely, we can think of
providing less information as collapsing multiple posteriors into one: if 77 is less

informative than full revelation, Fy is a mean-preserving spread of 7

The platform’s objective is to maximize some function of expected consumer
surplus and profits f(n, CS) through the choice of a distribution over posteriors
7P under the constraint that t” can be induced by some information policy. The

platforms program is then given by :

max f(mt, CS) s.t Fg > P > 10
7D MPS MPS

where > denotes the partial order of mean preserving spreads.

MPS

Seller’s Price Setting Problem The seller (he) sets prices.” When choosing prices
the seller knows the signalling structures S and SP but does not observe its signal
realisations s and sP. In other words he only knows how information is provided
to the buyer but not what is learned. Consequently, the seller optimizes with
respect to the expected demand of the buyer, given by all buyers whose expected

8A distribution of posterior beliefs ° € A(A(V)) is a mean-preserving spread of another distribu-
tion 79 € A(A(V)) if there exist € A(V)-valued random variables g°, g© such that (i) g ~ 7P
and ¢° ~ 79 and (ii) E(g° | 4°) = ¢°

9Notice that in this setting it will be without loss to focus on price posting as a mechanisms.
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Figure 1: Sellers Optimal Price Setting Strategy

This figure demonstrates the seller’s best-response when GP is a uniform distribution over [0, 1]. The seller
would set price of 0.5 and demand would be 0.5 leading to profits of 0.25.

valuation (post-learning) weakly exceeds the price:
D(G”,p) = (1= G (p) + AG”,p))

where A(GP, p) denotes any potential mass of GP at p. The seller maximizes

profits:
max7(p, G) =max (1 -G (p) +A(G,p))p
p p

To visualize the seller’s maximization problem, consider isoprofit curves, describ-
ing all combinations of prices and demand that lead to the same level of profits,
plotted as dashed red lines in Figure 1. For smooth demand functions, the seller

sets a price so that the demand function is tangential to the highest isoprofit curve.

The right hand side illustrates how we can express the same logic in terms of
CDF’s of posterior mean distributions— a 90° degree rotation of the left panel.
The red arrow indicates the direction in which profits increase: demand rises
downward, price rightward. For a smooth CDF, the seller sets a price where the
furthest south-east isoprofit curve is tangential to the CDF of posterior means GP.

This visually corresponds to maximizing profits.

Thus, the pricing decision of the seller depends on the shape of the posterior



mean CDF induced by the platform’s information policy. With this, we can turn to
understand ow the platform leverages its ability to shape demand.

3 Results

This section develops the welfare and pricing implications of information provision
by the platform . To do so, I start by introducing a relaxed version of the platform’s
optimization program to provide a tractable benchmark. I show that this relaxation
is without loss under maintained assumptions. Using this relaxation, I turn to
characterizing buyer- and seller-optimal information policy policies and connect
these results to the induced demand elasticities. I then characterize the set of
welfare outcomes and show that total surplus varies monotonically along the
Pareto frontier and is lowest under seller optimal information policy. The section
concludes by showing how the obtained results continue to be useful even when
outside information is not is not monotone non-overlapping: the relaxed program
then characterizes a robust version of the welfare set.

Posterior Mean Reformulation

The platform’s problem requires solving a maximization problem under mean-
preserving spread constraints on the distribution over posteriors, making the con-
straint set analytically cumbersome to work with. To make the problem tractable,
I consider a relaxed program that represents these constraints in terms of the
induced distributions of posterior means. This relaxation is motivated by the
fact that only the posterior means are payoff-relevant in my setting. Exactness
of this reformulation is ensured under the maintained assumption that outside

information is monotone non-overlapping as will be discussed shortly.

Original Program:
max f(m,CS) s.t Fg > 10 » 70
tPeA(A)V) MPS MPS
The platform chooses a distribution over posteriors, 7P, that is less informative than
full information but more informative than outside information. In the relaxed
program the platform instead chooses the posterior mean distribution G that lies

between the posterior mean distribution associated to outside information and the
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prior in the mean-preserving spread order:

Relaxed Program:
max f(n,CS) st Fo z GP z G°
The reason this is a relaxed program is that 72 being a mean-preserving spread
of 79 implies the same ordering between their posterior mean distributions, but
the converse does not generally hold.!? The following result formalizes that the
mean-preserving-spread relation between posterior distributions implies the same
ordering between their induced posterior-mean distributions.

Proposition 1. If t > 7' then G; > Gy.

MPS MPS

Proof. This result is standard but included for completeness see Appendix. v O

Hence, any feasible 2 under the original program yields a feasible GP under
the relaxed one. However, the reverse direction does not always hold.

Representing information structures by their induced distributions of posterior
means is standard in information-design problems without outside information
(e.g., Kolotilin, 2018; Gentzkow and Kamenica, 2016). When considering the relaxed
program, we are relaxing two constraints. Relaxing the constraint that the platform
can at most fully reveal the valuation continues to be without loss here for the
same reasons that appeared in the literature.!! By contrast, relaxing the constraint
coming from outside information can fail in general, but is valid under the main-
tained assumption that outside information is monotone non-overlapping. Under
this assumption, any posterior mean distribution satisfying the mean-preserving
spread constraint has a corresponding distribution over posteriors that also does
(Ennuschat, 2025).
Formally,

Proposition 2. Let 1 be monotone non overlapping. Take G > G, where G o is the
MPS

posterior mean distribution induced by T©. Then there exists t° such that ©° > 1© and
G0 =G.

MPS

197 thank Gabriel Carroll for providing an example that illustrates this point.
1This is shown formally in Lemma 4.
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Figure 2: Illustration of Example 1

The signalling structures illustrated above induce the same posterior mean distribution as an uninformative
signal. Thus signalling structures that are ranked by informativeness can induce the same posterior mean
distribution.

To illustrate why the relaxation can fail without the monotone-non-overlapping

assumption, consider the following example:

Example 1. Let v be distributed uniformly over the unit interval. Suppose there is no
outside information. The associated distribution over posteriors T puts probability 1 on
a posterior corresponding to the prior and the posterior mean GV is degenerate at 1/2.
Now introduce outside information and consider the following signalling structure S©
for outside information: The buyer learns whether her valuation lies in [0, %) U [%, 1], in
(3, 2)U[3, %) orin[2,32). Figure 2 illustrates the posteriors q© and the posterior mean
distribution GO this induces.

Notice that although the buyer is partially informed, the posterior mean distribution
coincides with the posterior mean distribution of a completely uninformed buyer, the
platform’s ability to shift the buyer’s beliefs differs. To see this, suppose the platform wanted
to induce a posterior mean distribution that assigns probability one half to (3 and 2) each.
When facing uninformed buyers the signalling structure inducing this is straightforward:
Tell the buyer when her valuation is below or above the mean. Under the outside information
described above, it is not possible to induce the target posterior mean distribution: Take

a buyer who knows their valuation lies in (2, 3]. Any beliefs she can form must remain
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within this interval, but the target posterior mean distribution is only outside the support
and posteriors cannot have means outside their support.

This illustrates that not all posterior mean distribution satisfying a mean-preserving
spread constraint can be induced through the provision of additional information.

In Ennuschat (2025) I show that the assumption on outside information is not only
sufficient but also necessary. Since Assumption 1 imposes that outside information
is monotone-non overlapping, considering the relaxed program is without loss in
this setting.

Under the relaxed program, the constraints can be restated using stochastic
dominance constraints on the posterior mean distributions:

rré%x f(m,CS)

s.t.Yx e [0,1]: /x GP(w)dw > /x GO (w)dw

0 0

X X
/ Fo(w)dw > / GP (w)dw with equality for x = 1
0 0

Call G admissible whenever it satisfies the two stochastic dominance constraints
above.

For the remainder of this paper I work with the posterior mean distribution G
directly, unless clearly stated. This will allow a clean characterization of the Pareto
frontier and welfare outcomes.

3.1 Pareto Frontier

Building on the previous reformulation, we can turn to analysing the platforms’
information policy. First, I consider a platform that maximizes consumer surplus
while ensuring a certain level of profits to the seller and then ask which such policy
yields the highest overall consumer surplus. To formalize this idea, take some ad-
missible information policy and consider whether the platform can use a different
information policy that leaves seller profits unchanged but improves consumer
welfare. When maximizing consumer surplus the platform has to trade-off two
effects: For a given price, a better informed buyer makes better purchasing deci-
sions. Consequently -at a given price- a platform maximizing consumer surplus
would fully reveal what she knows to buyers. Prices are however not fixed and
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the seller reacts to the platform’s information provision. Therefore the platform
needs to take the effect of changing information provision on prices into account.
It may provide information so that lower prices become incentive compatible for
the seller.

The following theorem describes how consumer surplus is maximized while
maintaining the seller’s profits. It provides an explicit construction of an admissible,

Pareto-improving posterior-mean distribution GY%:

Theorem 1 (Pareto Frontier). Consider an admissible posterior mean distribution G.
Let t = n(p*(G), G). Take

Fo(w) Z_'fO <w<c(C

1-Z lfClﬁa)<C2

G(UEa);ﬁ) =y 2
—w  Hwelxicx))

Gow) ifw>coand w ¢ [xi, c(x;))

where

c1 = Fé_ (1 — Cﬂ;)

€9 = min {a) e [, p"(G)] | /001 Fo(w)dw + (ca — ¢1) (1 - g) > /0C2 Go(a))da)}
xjeX= {a) €[0,1]| GP(w)=1- g and 9.G°(w) < ﬁ} u{r| if GP(7) = 0}

c(x;) c(x;)
c(x;) = min {a) € [x;, 1] / GgE(w)dw = / Go(a))da)}
0 0

Then
i) GYE is admissible,

ii) profits under GYEare the same as under G

n (p* (GYE), GUE) =

14



Some admissible Pareto-improving information policy

information policy at fixed profits
CDF CDF
T CS U CS
GD GUE
R GD ) P R (G UE )
pr P*(GHF
Q ( Q

Figure 3: Pareto Frontier

The left-hand side shows an admissible induced CDF of valuations under some information policy. The

right hand side displays the constructed GYE from Proposition 1, which keeps seller profits at 7t but (weakly)
increases consumer surplus.

iii) and consumer surplus under GUE is weakly higher than that under G:

(6)

where F~ is the generalized quantile function:

Fy(u) = inf{xeR:Fy(x)>u}, uel0,1]

For any profit level attainable under some admissible information policy, there
exists an alternative policy of the described form that delivers the same profits but
weakly higher consumer surplus. We can compare the alternative policy to the
original one. Figure 3 shows that the Pareto-improving posterior mean distribution
(LHS) leads to lower prices and higher demand than the original posterior mean
distribution (RHS).

The constructed policy GYE can be described by three elements: the prior F,
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posterior means under outside information G© and the isoprofit curves of the
seller. Figure 3 illustrates how these elements determine the shape of GUE. At
valuations below c1, the induced demand function GYE coincides with the prior
Fo (full revelation). GYE assigns no mass to valuations between c; and c»; that is,

GUE either

no buyer holds expectations in this interval. For valuations above c»,
coincides with posterior means under outside information or the isoprofit curve
(partial revelation). In equilibrium, the seller best-responds to GUE by setting a
price p = ca.

Partial revelation at valuations above ¢y arises whenever, under outside infor-
mation, the seller would have an incentive to deviate to higher prices. The role
of full revelation at the bottom is to encourage the seller to adopt a lower price:
when buyers with very low valuations are revealed, those who do not receive such
a signal rationally infer that their valuation is at least moderate. This inference
makes them more willing to purchase at prices just below the current level. The
larger set of buyers who would buy at these lower prices makes it profitable for
the seller to move the price down to ¢y while keeping overall profits constant.
Demand therefore rises while profits remain unchanged. With zero marginal costs,
this higher demand increases total surplus, and since profits are fixed, consumer

surplus increases as well.

Buyer-Optimal Information Policy Having characterized Pareto-improving poli-
cies, we now turn to the case in which the platform maximizes consumer surplus
without maintaining any profit constraint for the seller. By Proposition 1 any
information policy that maximizes consumer surplus at a given profit level must
lie in the family GYE. Hence the overall maximizer of consumer surplus must also
belong to this class. The following Proposition establishes that consumer surplus

is highest when profits are minimal.

Proposition 3 (Maximal Consumer Surplus). Consumer surplus is maximized at
min(rt) such that GYF is admissible. v

Fixing the level of profits 7 the consumer optimal information policy maximizes
total welfare since consumer surplus is the residual of total surplus and profits.
Its shape is displayed on the left hand side of Figure 4. With zero marginal costs,
efficiency is fully determined by demand in equilibrium. Consider all G € Gur

and note that c; decreases as we increase profits. Recall that under GYE buyers
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learn their valuation is below c¢; and will not purchase at the equilibrium price.
Consequently c; is inversely related to equilibrium demand. Thus, as we decrease
profits, the total level of demand under G € Gy increases and a lower target level
of profits increases efficiency. Consumer surplus is then maximal when profits are

minimal. Next, I analyse what information policymaximizes profits.

Seller-Optimal Information Policy

At the other extreme of the Pareto-frontier consider an objective where the platform
maximizes profits.

The effects of market power depend on the elasticity of demand, i. e. its sensitivity
to changes in prices. If demand is fully elastic, a monopolist does not ration the good
and prices at marginal costs just like a competitive firm. As elasticity decreases,
markups increase. The platform provides information in a way that leverages this
relationship and exacerbates the effects of market power. If the platform could
choose any demand function it would choose one that is completely inelastic: The
buyer would always purchase the good independently of the price charged. But no
information policy can induce such a demand function since the information policy
needs to be consistent with the prior: a rational buyer that is fed with consistently
biased messages will detect the bias and correct for it. Outside information tightens
this constraint further since information provision cannot contradict what the buyer
already knows to be true.

The platform’s ability to magnify market power is therefore restricted: demand
will have an inelastic region but its size and location are constrained by what the
buyer knows to be true.

The following proposition characterizes properties that any optimal information

policy must satisfy:

Proposition 4 (Seller Optimal Information Policy). Any admissible GP that maximizes
profits is such that:

i) Atcy = F§ (GP(p)) the stochastic dominance constraint on Fy binds:
Fi(G(p))
/ Fo(t) — GP(t)dt =0
0

ii) GP assigns no mass to the subinterval [F5™(GP(p)), p)
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Figure 4: Buyer and Seller Optimal Information Policies

iii) GP is such that at p the stochastic dominance constraint on G© binds:

/WGWQ—G%ﬂw=0

0

Proposition 4 is proven in the Appendix through a sequence of lemmas estab-
lishing the optimal shape of demand for different ranges of v. These lemmas show

that for and information policy that is different from Proposition 1, profits can be

weakly increased by adapting the information policy so that demand remains the

same at higher prices. Any information policy that is optimal must have the above

properties but to find some optimal information policy it is enough to focus on the

following family.

Corollary 1. Consider the following family of information policies indexed by m:

Folw) f0<w<c
GIE(a);n): 1—% ifci < w <cy

GOow) ifcasws<1

where

fci Fo(w)dw - fci GO(w)dw

Co =C1+ =
C2

18



Denote the set of all such distribution functions G'E. Then all G € G'F are admissible and

there is one that maximizes profits.

Figure 4 illustrates the shape of the seller-optimal information policy

Given the two primitives—the distribution of valuations F( and the distribu-
tion of expected valuations under outside information G® — the seller-optimal
information policy is characterized by two cutoffs ¢; and c». For valuations below
c1 ,just as under the buyer optimal information policy, the platform fully reveals
information so that GP coincides with the prior Fy. This ensures consistency with
the prior and provides the flexibility to pool higher valuations in order to increase
demand at higher prices. Between c; and ¢, GP assigns no mass, again just like
under the buyer optimal information policy, creating a flat segment where demand
is inelastic. For valuations above ¢y there is no further revelation, so the induced
demand function GP coincides with the distribution of expected valuations under
outside information G°.

Given this information policy, the seller sets a price p = c5. At this price, lowering
prices slightly does not increase demand, as the flat segment makes demand
unresponsive. Raising prices, on the other hand, sharply reduces demand because
many consumers are exactly indifferent at c,. Hence, the seller has no profitable
local deviation.

To determine the seller-optimal rule, the platform can restrict attention to the
inelastic demand functions in in G'f and must therefore only choose the cut-off
c1. Increasing c¢; lowers demand but allows the seller to charge higher prices. The
optimal c; balances these effects so that the induced price-demand combination
lies at a point of unit elasticity, where a marginal change in demand leaves revenue
unchanged. While in standard monopoly analysis unit elasticity characterizes the
seller’s optimal price for a given demand curve, here the platform reverses the
logic: it designs the demand curve itself so that the seller’s best-response price
achieves unit elasticity.

By creating a range of inelastic demand, the platform amplifies the seller’s market
power. This structure allows the seller to charge a higher price without losing
many buyers, thereby maximizing profits subject to the informational constraints.

Figure 4 displays consumer and seller optimal information policies side by
side. Demand and therefore total surplus is higher under the consumer-optimal
information policy. I next consider how total surplus changes when instead of

optimizing the outcomes of either market side, the platform cares about a weighted
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average of the two.

Welfare Set

Pareto Frontier A platform that optimizes a weighted average of profits and con-
sumer surplus—rather than focusing exclusively on one side of the market—will
induce an outcome located somewhere along the Pareto frontier. Its exact location
will depend on the assigned weights.

This frontier is fully characterized by information policies in Proposition 1 :
we vary profits and selects a information policythat at those profits maximizes
consumer surplus. We have already seen that total surplus is higher under the
consumer-optimal information policy than under the seller-optimal information
policy. The following proposition establishes that total surplus changes monotoni-
cally as we shift weight to the consumer.

Proposition 5 (Misalignment of Total Surplus and Profits ). max (CS(mn)) + m is
decreasing in .

Figure 5 illustrates this point: total surplus is constant along the dotted 45° lines.
The logic here mirrors that of Proposition 3. Take some target profit level 7 and let
GYE denote the policy that maximizes consumer surplus given these profits. Now
consider a decrease in the target profit level, which corresponds to a leftward shift
in the target isoprofit curve. The platform has to adapt GYF to ensure demand
is weakly to the left of the new isoprofit curve everywhere. The leftward shift
makes the isoprofit easier to attain allowing the platform to reveal low valuation
less frequently. As fewer consumers learn that their valuation lies below the price
demand increase and therefore total surplus does too.

Consequently, as profits decrease, both total and consumer surplus increase
monotonically along the Pareto frontier.Under monotone non-overlapping outside
information, total surplus remains constant over a range of profits and increases dis-
cretely whenever a marginal reduction in profits enables the platform to persuade
an additional mass of low-expectation buyers to purchase at a lower, incentive-

compatible price.
Welfare Set While the previous analysis focused on platforms that maximize a

weighted average of consumer surplus and profits, the platform’s objective need

not take this specific form. In this section, I characterize the full set of welfare
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Figure 5: Welfare Outcomes

Welfare under outside information is weakly decreasing along the Pareto Frontier; the 45° degree lines
outline constant total surplus levels. The welfare set under no outside information was characterized by
Roesler and Szentes (2017).

outcomes that can result from any admissible information policy chosen by the
platform.

Firstly, consider the seller’s profits. In the preceding section, I established that
the consumer-optimal information policy minimizes profits. Consequently, any
profit level the platform can induce must fall within the spectrum bounded by the
seller-optimal outcome (7) and the buyer-optimal outcome (7). The subsequent
lemma confirms that all such profit levels are indeed achievable through some
information policy.

Lemma 1. For any 1t € (1, ©| GYE as defined in Theorem 1 is admissible and induces 7.
v

For producers, this gives us all profit levels that can arise as the result of some
information policy.

To also understand welfare outcomes for consumers, we need to characterize
all levels of consumer surplus that are attainable by some information policy for
a given level of profits. For any profit level, Proposition 3 gives us the maximal
consumer surplus (CS(r)) that some admissible information policy can induce.
The following lemma characterizes minimal consumer surplus (CS(7t)) attainable
by some information policy at profits 7= for some optimal price p. Let p”*** denote
the maximal price that- at a given information policy - is incentive compatible for
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the seller.

Lemma 2. Take some 1 € [, ©|. Then minimal consumer surplus CS(m) is attained by
setting the highest incentive compatible price at given At those profits, consumer surplus
is minimized by G € GYE such that

(i) For p™** we have that

pmlzx pnmx
/ G (w)dw = / GP(w)dw
0 0

(it) For Fi (G(p™**)) we have that

Fy (G(p™™)) Fy (G(p™™))
/ G (w)dw :/ Fo(w)dw
0 0

v

Revelation that minimizes consumer surplus at a given level of profits maximizes
the incentive compatible price p™** for the seller and at that price suppresses
consumer surplus to its minimal level-consumer surplus under outside information.
The following lemma establishes that any level of consumer surplus CS € [CS, CS]
can also be induced:

Lemma 3. Any CS(n) € [CS(n), CS(mt)] is implementable. v
This allows us to characterize the set of welfare outcomes.

Proposition 6 (Welfare Set). The Welfare Set is given by:

Wo = {[(m, CS(m), (n, CS(r)] | s.£.7 € [, 7]}

This result follows directly from Lemmas 1-3. The welfare set is generally
non-convex. In standard information design problems, convexity arises because
the designer can randomize across signaling structures and thereby mix welfare
outcomes. Here, however, such randomization is not feasible: the platform cannot
simultaneously randomize over signaling structures and over the price that the

seller finds optimal given each structure. Randomizing across signalling structure
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typically alters the induced demand function, which in turn can change the seller’s
best-response in prices in a discontinuous way.

A full characterization of the welfare set would in principle require solving for
all the consumer-optimal information policy at any level of profits. Leveraging
the structure we can instead construct bounds that only require computing the

consumer and the seller optimal information policies:

Corollary 2. Consider the following two sets:

(W(r)nax — {[(TC, CS(n)), (n,ﬁ(ﬂ) +n—-n)l|stne(n, 7:(]}

Whin = { [(r, CS()), (1, CS(®) + T — m)] | s.t.m € [, ﬁ]}

Let W denote the boundary of ‘W. Then we have that W lies in between the two
bounding curves (W(’)”i” and WE :

IWo € WH™\ int(WH™)

Intuitively, the upper bound set WI"* keeps total surplus fixed to its maximum
level (attained in the consumer optimal outcome) and only varies how surplus
is distributed. Similarly, the lower bound set ‘Wgzi” instead keeps total surplus
to its minimum (attained in the seller optimal outcome) and again varies only its
distribution. The true welfare frontier, W)y lies in between the frontiers of these

two sets.

Not Monotone Non-Overlapping Outside Information

Robust Welfare Outcomes When outside information is not minimal, the relaxed
and unconstrained program do not coincide. Hence the solution to the relaxed
program may not be implementable in general. Here, I discuss in what sense
the solution to the relaxed program still provides bounds on the welfare set. The
welfare set that we derived above may nevertheless be useful to make predictions
of market outcomes in some robust sense:

Consider a policy maker that for a given market is concerned with the potential
welfare effects that may arise as a consequence of information provision through

platforms. The precision of forecasting those welfare effects depend on what we
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Figure 6: Robust Welfare Set and Bounds on Welfare Outcomes

know about the platform’s objective and the current market structure, shaped by
outside information. Often we do not want to assume a certain objective but are
instead interested in understanding the welfare consequences for any objective the
platform may have. The platforms’ ability to alter the current market structure de-
pend on what consumers already know. Hence what we know about the structure
of this outside information also alters our predictions of potential welfare outcomes.
Suppose the policy maker does not know what exact information consumers are
accessing but only observes the resulting demand function. Then to understand
all potential consequences for welfare, our predictions need to be robust to any
information structure that could have generated the observed demand function.
Hence to characterize all welfare outcomes that could arise as a consequence of
information provision through platforms, the policy maker needs to consider all
those signalling structures. The following theorem establishes that the welfare set

as characterized in the previous section characterizes this robust welfare set.

Theorem 2. Let Wo be the set of welfare outcomes according to the relaxed problem. Let
W, o be the set of welfare outcomes of the unconstrained problem. Then

) Weo =Weo

10€GO

where T € GO if 70 is such that the induced posterior means are distributed according to
GO.
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This result is an immediate consequence of the following Lemma:

Lemma 4. Consider t° € A(A(V)) and let GP € A(V) denote the induced distribution
over expected posteriors E(v | SP). Then for any distribution G© € A(V) that is a mean-
preserving contraction of GP there exists T° inducing G©, where TP is a mean-preserving
spread of T°. v

4 Literature

A large literature studies how information provision shapes trade and welfare
in markets. The central question in this literature is how information disclosure
affects price setting and competition. Two main strands can be distinguished: one
analyzes disclosure to sellers, the other disclosure to consumers. Existing models
typically assume that information can be freely designed and abstract away from
potential constraints due to agents’ initial partial information — a limitation this
paper seeks to address.

When information is revealed to consumers, it shapes market demand and through
that affects the sellers’ pricing decision. In a seminal contribution, Roesler and
Szentes (2017) provide a characterization of the buyer-optimal disclosure rule in
a bilateral trade model. They show that lower prices rather than increased pur-
chasing accuracy are the primary channel to enhance consumer welfare. Because
uninformed buyers allow sellers to extract all surplus under no disclosure, the
seller-optimal policy is straightforward. Here, disclosure governs the distribution
of total welfare, but does not vary with the platforms objective since efficiency can
be achieved along the Pareto Frontier. When a seller jointly decides what quality
of a product to offer and discloses information to consumers, the seller chooses
less-than-efficient quality differentiation and does not fully disclose the valuation
to the buyer Bergemann et al. (2025b). In duopoly, information design affects the
intensity of competition by altering how similar consumers perceive products
to be (Armstrong and Zhou, 2022). Again, the platforms objective governs the
distribution of welfare but not its level- Here, the designer leverages their ability
to alter the competitiveness of the market depending on their objective.

In contrast, when allowing for outside information, total surplus varies along the
Pareto Frontier and is highest under consumer optimal disclosure.
The literature studying revelation to sellers also explores how information affects

the relationship between total and consumer surplus. When consumers know
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their valuations, disclosure to sellers segments the market and enables price dis-
crimination. In monopoly, this segmentation can restore efficiency and ensure
that the benefits of discrimination are allocated to consumers (Bergemann et al.,
2015). In multi-product monopoly, where the seller engages in second-degree
price-discrimination due to menu setting and third-degree discrimination due to
segmentation, an appropriate segmentation makes both consumers and the seller
better off whenever the market is inefficient without segmentation (Haghpanah
and Siegel, 2023).

In competitive markets, the designers segmentation has to optimally trade-off
intensified competition when firms get more accurate information with their in-
creased ability to price discriminate (Elliot et al., 2025; Bergemann et al., 2025a).
(Bergemann et al., 2025a) show that consumer surplus maximization can be at-
tained without any cost to efficiency. Consumer and total surplus are aligned in
the sense that allowing for price discrimination can achieve total and consumer
surplus maximization simultaneously independent of market structure. Under
outside information I show that in homogeneous product monopoly alignment
takes a stronger form; total surplus decreases as we move away from consumer
optimal disclosure. The mechanism is also different since I consider disclosure to

consumers, not the seller.

Bergemann et al. (2025b). There is work considering receivers who are privately
informed. When buyers need to voluntarily reveal their valuation to sellers, they
trade-off better match quality with potential surplus extraction through price dis-
crimination when engaging with a multi-product monopolist (Ichihashi, 2020) as
well as the competitive consequences with multiple sellers (Ali et al., 2023). A dis-
tinct line of work studies mechanisms that elicit private types. Kolotilin et al. (2017)
shows that when the private type of the consumer is independent of the sender’s
information for any mechanism that elicits the receiver’s private information and
discloses conditionally on the private information there is a disclosure rule that
does not condition and induces the same payoffs. In my setting, outside informa-
tion is not independent of the valuation. Guo et al. (2025) consider a bilateral trade
setting, allowing for privately informed receivers whose type is correlated with
the sender’s information. They derive the optimal menu of contracts consisting
of a price and an information policy when the buyers private information can be
described by a binary type. Both Kolotilin et al. (2017) and Guo et al. (2025) study
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the elicitation of private information, which is distinct from outside information.
Under elicitation the optimal revelation of additional information can be solved
separately; whereas under outside information they cannot; the designer cares
about the overall induced demand function.

There is a literature studying information design under constraints. Koessler
and Skreta (2023) study the information design problem where the sender is par-
tially informed; in my setting, instead, the receiver is partially informed. Onuchic
and Ray (2023), Mensch (2021) and Ivanov (2021) impose structural constraints
on the information the sender can reveal and require it to be monotone parti-
tional. Le Treust and Tomala (2019) consider a setting where communication is
subject to noise not controlled by the sender. Doval and Skreta (2024) provide
conditions under which persuasion with additional constraints is equivalent to
a unconstrained problem with an expanded state space. Terstiege and Wasser
(2020) also study buyer-optimal information design in a bilateral trade model and
focus on extension-proofness; the chosen experiment must leave the seller with
no profitable incentive to add further information ex post. Any extension proof
buyer-optimal information structure only pools two valuations.

The present framework complements this line of research by introducing a dis-
tinct form of constraint: the receiver’s outside information is correlated with value
and observable to the platform, thereby linking the information design problems

across consumers and limiting the designer’s control over feasible disclosures.

5 Conclusion

This paper shows how a platform can influence market structure and outcomes
by providing information to partially informed consumers. I simplify this com-
plex problem by invoking results from Ennuschat (2025) that allow the platform
to directly optimize over the consumer’s expected valuations which determine
demand.

The platform’s disclosure changes the elasticity of demand depending on its
objective. A platform that maximizes revenue, adopts a disclosure rule that leads
to inelastic demand in an intermediate region, shaping demand in a way that
increases the monopolist’s market power. A platform that instead aims to maxi-
mize consumer surplus will induce unit-elastic demand in an intermediate region,

making the monopolist indifferent between intermediate prices. Across all infor-
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mation policies, efficiency is highest in this buyer-optimal-outcome and decreases
for any other objective. Thus, when consumers are partially informed, additional
information does not only govern the distribution of total surplus, but also affects
its level. This shows how allowing for outside information can lead to qualitatively
different insights from those obtained when considering full control information
design problems.

In markets where digital platforms tailor information based on users’ prior
knowledge, the findings highlight how the design of disclosure itself becomes a
key determinant of efficiency and market power.

The qualitative difference to full control information design problems suggests
that introducing outside information to other market structures featuring competi-
tion, quality differentiation or where instead of disclosing information to buyers,
communication occurs to multiple sellers could lead to interesting insights. An-
other avenue for future work would be to consider a setting where the platform
does not have full control and must provides additional information independently

of the consumers outside information.
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Appendix

Proof. Since 7P is a mean-preserving spread 7 there exists z” ~ 7P and z© ~ 7© such that E(zP | z0) = z°.

Let the induced posterior mean distributions be given by E(zP) ~ GP and E(z°) ~ G°. By the law of
iterated expectations:
B(E(z") | B(z?)) = BE[E(" | 2°)] | E(z7)

D

Since 7 is a mean-preserving spread of 7°

B(E[E(E" | 2] B(z7) = B(B[z°]| B(z°)) = B(z°)
Since E(zP) ~ GP and E(z°) ~ GO this establishes that GP is a mean-preserving spread of G° O

Lemma 5. The function T(x) = fox GO(t)dt where GO(t) isa CDF and 0 < x < 1 is continuous.

Proof. Take some point ¢ € [a,b] then T(x) = T(c) = fax GO(t)dt — /ac GO(t)dt = fcx GO(t)dt. Since t € [0, 1],
the area below the cdf T(x) is bounded to be less then 1 /a ’ GO(t)dt < 1 Therefore we have

X X X
—/ 1dt§/ GO(t)dt s/ 1dt
[ [ C

—(x—¢) < /x GO(H)dtGO(t) < (x —c)dt

Thus | T(x) = T(c) |<| (x = c) | and thus since lim | (x — ¢) |= 0 the limits of T(x) converge and it is therefore
X—C

continuous. O

Proofs Pareto Frontier & Buyer Optimal Information Design

Proof of Proposition 1. Proposition 1 follows from subsequent Lemmas 6- 8. A |

Lemma 6 (Full revelation of low valuations). Take G(w) such that there is no ¢y such that forall w € [0, cq]
G(w) = Fo(w). Then there exists GP that is admissible and induces weakly higher consumer surplus. A

Proof Lemma 6. Let p and 7t be the smallest optimal price under and profit level induced by G respectively.
Case 1: Consider first the case where for all w € [0, ;5] we have that Fo(w) > 1 — £ Then consider the
following G:

Fo(w) if0<w<cy

1-L fg<w<cey

Glw) = E )
1-% ifca<w<p

G) iff<sw<l
where ¢y = F§~ (1 - %) Now c3 is defined as the smallest x € [7, §] such that /01 Glw)dw = /01 G(w)dw. To

show G is well defined, I need to show c5 is well defined.
Consider ¢o = 7t. Then ¢; = 0 and

/Olc(w):/f 1-% dm+[1é(w)g/01@(w)dw
_ p

<G(w) by optimality of §
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Consider ¢ = p and note that

/OIG(w)dw = /OC1 Fo(w)dw+/:wda)+/ﬁlé(w)z ‘/Olé(a))dw

— ~G(p)
2/0 1 G(w) —_—
2/£ G(w)dw

Since by Lemma 5 fox G(w)dw is continuous and by the intermediate value theorem c; is well defined.
Next it is necessary to establish admissibility of G. Notice that by construction G is mean-preserving.

Fo >mps G For x € [0, c1] admissibility is immediate since G = Fy.

For x € [cy, c2] we have that

ClF - F xF - —ﬁ d XF - F
/0 o(@)  Folw) + / o(@) (1 )wz / o(@) = Folc) > 0

(o)) 1

and therefore the majorization constraint is satisfied.
For x € [c2, 7] we have that

/O1F0(a))—Fg(a))+/612F0(w)—(1—%)dw+/€2 Fo(w)—(l—g) dw >0

>0 by assumption of Case 1

For x € [p, 1] we have that /xl Glw)dw = /xl Glw)dw > /xl Fo(w)dw where the last inequality follows from
admissibility of G.

G >mps GO For x € [0, c1] admissibility is immediate since G = Fj.
For x € [c1, c2] I will show that fox Glw)dw > fox G(w)dw. Notice that c; is defined as the smallest x such
that

/ﬁ G(w) - Glaw)dw = / Fo(w) - Glew)dw + / (1 _ CE) _ Gw)dw + /ﬁ (1 _ g) _ G(w)dw = 0
2 co

0 0 c1

<0 by optimality of

Thus it must be that
C1 _ Cc2 'f[ ~
/ Fo(w) - G(w)dw + / (1 - —) - G(w)dw =0
0 C1 C2

To see this suppose for some x € [cy, c2]

‘/061 Fo(w) - G(w)dw + /Clx (1 - g) - G(w)dw <0

Then since CDF’s are weakly increasing we have that

/061 Fo(w) — G(w)dw + /Clc2 (1 - g) - G(w)dw < /OC1 Fo(w) - G(w)dw + /6162 (1 —~ %) - Gx)dw

A contradiction. o 3 i
For x € [c1, c2] again by the definition of G /Op Gdw = fop Gdw and for all w G(w) > 1 - Z so by the same

argument as in the previous case: /Ox G(w) - G(w)dw > 0.

For x € [, 1] we have that /xl Glw)dw = /xl Glw)dw < /xl GO(w)dw where the last inequality follows from
admissibility of G.
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Case 2: Next consider the case where Jw € [0, p] such that Fo(w) < 1 - Z. Let t be defined as the smallest
x such that Fy(x) < 1 - Z. Consider the following G:

Fo(w) if0<w<cy
Glw) = 1—C~—2 %fc1$a)<c~2
- ifea<w<p
Gl) iff<w<l
where ¢; = Fi~ (1 - %) Now c3 is defined as the smallest x € [7, ] such that /01 Glw)dw = /01 G(w)dw. To
show G is well defined, I need to show cs is well defined.
Consider ¢3 = 7. Then ¢; = 0 and

1 t . 1 1
/ G(a))da):/ 1-Z da)+/ G(w)ﬁ/ Glw)dw
0 0 w 7 0
<G(w)by optimality of

C2

/OIG(aJ)da) = /OCI Fo(w)dw +/tl(§(a)) > /Olé(a))da)

—_—
Zfocl G(w)dw

Consider ¢5 such that ¢; = F(‘)_ (1 — ﬂ) = t and note that

Since by Lemma 5 fox G(w)dw is continuous and by the intermediate value theorem c; is well defined.
Fo >mps G For x € [0, c1] admissibility is immediate since G = Fy.
For x € [c1, c2] we have that

‘/0 1 Fo(a)) — Fo(a)) + [1 F[)(CL)) — (1 - %) dw > '/C1 Fo(a)) - Fo(Cl) >0

where the last inequality follows from the definition of c; and therefore the majorization constraint is
satisfied.
For x € [co, t] we have that

‘/0 1F0(w)—F0(w)+[1QFO(w)—(l—g)da)-f-/cz Fo(a))—(l—g)da)zo

>0 by definition of ¢

For x € [t,1] we have that /xl Glw)dw = fxl Glw)dw > fxl Fo(w)dw where the last inequality follows from
admissibility of G.

G >mps GO For x € [0, c1] admissibility is immediate since G = Fj.
For x € [c1, c2] I will show that fox Glw)dw > /Ox G(w)dw. Notice that ¢ is defined as the smallest x such
that

7 ~ c1 _ c2 7 N p 7 N
/0 G(w) - Glw)dw = /0 Fo(w) - G(w)dw + /Cl (1 - 5) - Glw)dw +/ (1 - ;) - G(w)dw =0

€2

<0 by optimality of
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Thus it must be that

/OCI Fo(w) - G(w)dw + /6:2 (1 - c%) — G(w)dw 2 0

To see this suppose for some x € [c1, c2]

c1 B x 7t _
/0 Fo(w) — G(w)dw + /C1 (1 - C—2) - Glw)dw <0

Then since CDF’s are weakly increasing we have that

/OC1 Fo(w) - G(w)dw + /Clc2 (1 - CE;) - Glw)dw < /0C1 Fo(w) - G(w)dw + /C::) (1 - :—2) - G(x)dw

A contradiction. For x € [cy, c2] again by the definition of G /Oﬁ Gdw = foﬁ Gdw and forall w G(w) > 1 - Zg
so by the same argument as in the previous case: fox G(w) - G(w)dw > 0
For x € [, 1] we have that /xl Glw)dw = /xl Glw)dw < /xl GO(w)dw where the last inequality follows from

admissibility of G.
Higher Consumer Surplus Now notice that in both cases the optimal price under G is ¢ which by construc-

tion is smaller than . Consequently demand and therefore efficiency is higher under G than under G. If
efﬁciengy is higher and profits are the same than it must be that consumer surplus is higher under G than
A

under G.
O

Lemma 7 (Region of Inelastic Demand). Take G and let 5 be the smallest optimal price. By Lemma 1 suppose there

exists ¢1 such that Yo € [0, ¢ ] we have that G(w) = Fo(w) but for w € [c1, 7;] G(w) (1 - %) Then there exists
A

GP that is admissible and induces weakly higher consumer surplus.

Proof Lemma 7. Let p and 7t be the price and profit level induced by G respectively. )
Case 1: Consider first the case where for all w € [0, f)] we have that Fo(w) > 1 — £ Then consider the

following G:

Fo(w) if0< w < cf(c2)

Glw) 1—% ifci <w<cy
w) = 2

- ifCQSCL)<ﬁ

G) ifp<sw<l

where c*“(c2) = F§~ (1 - %) Now c3 is defined as the smallest x € [7, 7] such that /01 G(w)dw

/01 G(w)dw. To show G is well defined, I need to show ¢ is well defined. Consider ¢, such that ci®®(cz)
FE)_ (1 - %) =C1

1 c1 c2 7t p T 1 - 1 ~

/ G(w) = / Folw)dw + / (1 - —) dw +/ (1 - —)dw +/ G(w) < / Glw)dw

0 0 “—— c1 €2 ca w P 0
~G(w) — —

<G(w) <G(w)

since CDFS are increasing by optimality of p
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Consider ¢y such that ¢; = F‘O_ (1 - ﬂ) = t and note that

Cc2

/OIG(w)da) = /OCI Fo(w)dw +[1G(w) > /Olé(a))da)

N——
> [ G(w)dw

Since by Lemma 5 /Ox G(w)dw is continuous and by the intermediate value theorem c5 is well defined.
Consider c}*" = Fi~ (G(f))) and note that

/01 Glw)dw = /OCI Fo(w)dw + /: (1 - g)da} + /ﬁl G(w) > /01 Glw)dw

> 3t Glw) =G(p)

> 7 Gw)dw

Since by Lemma 5 fox G(w)dw is continuous and by the intermediate value theorem c; is well defined.
Next it is necessary to establish admissibility of G. Notice that by construction G is mean-preserving.
Fy >mps G For x € [0, c1] admissibility is immediate since G = Fy.

For x € [c]*", c2] we have that /061 Fo(w)—Fo(w) + fcf Fo(w)— (1 - %) dw > 0 and therefore the majorization

constraint is satisfied.
For x € [c2, 7] we have that

new

‘/01 Fo(a))—Fo(a))+/C;;Fg(a))—(1—%)da)+‘/c2 Fo(a))—(l—g) dw >0

>0 by assumption of Case 1

For x € [p, 1] we have that fxl Glw)dw = fxl Glw)dw > fxl Fo(w)dw where the last inequality follows from
admissibility of G.

G >mps G© For x € [0, c'*?] admissibility is immediate since G = Fy.
For x € [c]*", c2] I will show that /Ox Glw)dw > fox G(w)dw. Notice that c'*? is defined as the smallest x
such that

~ new ~

c ca p
G-Gdow = Fo(w) — G(w)dw + (1 - 2) - G(w)dw + (1 - g) - G(w)dw =0
R Ly (R

<0 by optimality of

Thus it must be that

new

c 5 co 7 B
/0 Fo(w) — G(w)dw + /C (1 - a) - Glw)dw =0

new
1

Now suppose for some x € [c]°?, c2]
new

/061 Fo(w) - G(w)dw + /Cnx (1 - g) - G(w)dw <0

ew
1
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Then since CDFS are weakly increasing we have that

new new

~ Tt ~ / ~ ‘ Tt ~
'0/ Fo(w) — G(w)dw +C;m/w (1 - C_2) - Glw)dw < 0/ Fo(w) — G(w)dw ié (1 - a) - G(x)dw

A contradiction.

For x € [c]?, c2] again by the definition of G foﬁ Gdw = /Oﬁ Gdw and forall w G(w) > 1 — gg so by the same
argument as in the previous case: fox G(w) - G(w)dw > 0.

For x € [p, 1] we have that fxl Glw)dw = /xl Glw)dw < /xl GO(w)dw where the last inequality follows from
admissibility of G.

Case 2: Next consider the case where Jw € [0, fi] such that Fo(w) < 1— Z. Let t be defined as the smallest
x such that Fy(x) < 1 - Z. Consider the following G:

Fo(w) if0< w < cf(c2)

1-& ifegfw<co

G(w) = €2
1-Z ifeo<w<p

Glw) ifp<w<l

where c“(c2) = F§~ (1 - %) Now ¢, is defined as the smallest x € [, f] such that /01 Glw)dw = /01 Glw)dw.
To show G is well defined, I need to show c9 is well defined.
Consider ¢z such that c““(c2) = F§~ (1 - %) =

/Olc(a))=/061io(/a_)2da)+ /6:2(1—%)@) +/:(1—g)da)+/ﬁlf}(w)s/Olé(a))da)

=G(w) - B
<G(w) <G(w)
since CDFS are increasing by optimality of

Consider ¢y such that ¢y = F§~ (1 - %) = t and note that

/01 Gw)dw = /001 Fo(w)dw + /tl G(w) > /01 G(w)dw

R ————
> [ G(w)dw

Since by Lemma 5 fox G(w)dw is continuous and by the intermediate value theorem c; is well defined.
Since by Lemma 5 fox G(w)dw is continuous and by the intermediate value theorem c; is well defined.
Fo >mps G For x € [0, c}°"] admissibility is immediate since G = Fy.
For x € [c[°?, c2] we have that /Ocl Fo(a))—Fo(a))+foew Fo(w)— (1 - %) dw > 0 and therefore the majorization
1

constraint is satisfied.
For x € [co, t] we have that

new

‘/0 ! Fo(w) — Fo(w) + /c';fz Fo(w) — (1 — g)da} + /C2 Fo(w) — (1 - g)da} >0

<(1-%)
2 >0 by definition of ¢

For x € [t, 1] we have that fxl Glw)dw = fxl Glw)dw > fxl Fo(w)dw where the last inequality follows from
admissibility of G.
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G >mps GO For x € [0, c|'“?] admissibility is immediate since G = Fj.
For x € [c}*", c2] I will show that /Ox Glw)dw > fox G(w)dw. Notice that ci®® is defined as the smallest x
such that

new

t ] c2 ~ ~
/0 G-Gdw = /0 Fo(w) — G(w)dw + /CT“” (1 - :—2) - G(w)dw + [: (1 _ g) - G(w)dw =0

————
<0 by optimality of
Thus it must be that
C?BTU . C2 ﬁ 5
/ Fo(w) — G(w)dw + / (1 - —) - Glw)dw =20
0 Crliew Co

Now suppose for some x € [c]°Y, ca]

e B x 7t B
/0 Fo(w) — G(w)dw + /c” (1 - a) - Glw)dw <0

ew
1

Then since CDF’s are weakly increasing and (1 - %) is constant we have that

new new

~ Tt ~ / ~ ¢ Tt ~
0/ Fo(w) — G(w)dw +CT4 (1 - C—2) - Glw)dw < 0/ Fo(w) — G(w)dw +C’1w/w (1 - 6—2) - G(x)dw

A contradiction. 3 y

For x € [c]*", c2] again by the definition of G /Op Gdw = /Op Gdw and forall w G(w) > 1 — %g“g so by the same
argument as in the previous case: /Ox G(w) - G(w)dw > 0

For x € [, 1] we have that /xl Glw)dw = /xl Glw)dw < /xl GO(w)dw where the last inequality follows from
admissibility of G.

Higher Consumer Surplus Now notice that in both cases the optimal price under G is ¢ which by construc-
tion is smaller than 5. Consequently demand and therefore efficiency is higher under G than under G. If
efficiency is higher and profits are the same than it must be that consumer surplus is higher under G than

under G. A
O

Lemma 8. Consider a market outcome (p, D(p)) and let 7t and CS be the associated profit level and consumer surplus.
Take

Fo(w) if0<w<c
GUE _ —% ifci1 <w <cy
1-7 ifwe[xjc(x))

GO(w) ifw=coand w ¢ [xi, c(x;))
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where

C1=F6_(1—Z(—2)

C9 = min {a) € [n,pl| /OC1 Fo(w) + dw(ce — ¢1) (1 - %) > /0C2 GO(a))da)}

Tt

(a))2} u{#| if G(f) = 0}

c(x;) c(xi)
c¢(x;) = min {a)e[n,f)]l /0 Glw)dw = /0 Go(a))da)}

xi€X = {a) €[0,1]] G%(w) =1 - g and 9,G°(w) <

Then

i) GYE is admissible,
i) profits under GUare the same as under G

m (5" (GUE) , GYF) =
iii) and consumer surplus under GUE is weakly higher than that under G:

/p*l (@ = p* (GFF)) dG"F(w) 2 /p 1 (- p* (G) dG(w)

(cu*) (@)

Proof. First we need to show to c3, x; and c(x;) are well defined. To see that c3 is well defined, we use the
intermediate value theorem. Take ¢y = 7

Co =T : / G(w)dw =0 s/ GO (w)dw
0 0

co=p: /OP Glw)dw = /061 Fo(w)dw + (p — ¢1)Fo(c1) > /0” GO (w)dw

=/Of) G(w)dw

where the last inequality follows from the fact that if (7, D(p)) is a market outcome there is an admissible G
of the above form that by Lemma 6 and 7. Notice that if GO(r) = 0 then c3 = 7. Otherwise the majorization
constraint will bind at ¢5. To see that x; is well defined notice that X is a finite and ordered set. X is the
set of all starting points of intervals where the isoprofit curve is above the demand function under outside
information Let x; = min X and let x;41 = min X\{x1,...x;}. Iwill show that c(x;) is well defined inductively.
Take x; = x1. Use the intermediate value theorem to see that c(x) is well defined.

c(x1) = x1 + € :if x; > m then

Cc1 Cc2 ﬁ X1 X1t€ ﬁ X1+€
/ Fo(w)dw + / (1 - —) dw + / GO (w)dw / 1-—do > / GO (w)dw
0 c1 C2 Co X1 w 0
—_——

>GO(w)
for some €>0 since x1€X

i+e 7t t+e
/ 1-—do > / GO (w)dw
7t w 0
——

>GO(w)
for some €>0 since x1€X

:/ch GO(w)dw

Ifxlzﬁ
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Take c(x1) =1

<[ GO (w)dw </, Gl@do
—— U
co 1 ~
1 / Glw)dw + /C;q GO(w)dw + / 1- Zdo if X1 > T
/ Glw)dw =179, . X1 @
0 / 1- Eda) ifx;>mn
7t @
—_— ———
</ Glw)dw

1
(@]
< ‘/0 GY(w)dw

since there must be an admissible G that induces outcome (#, D(#)) and thus G must be above the associated
isoprofit curve and since it is admissible for any x: fx ! G(w)dw < fx ' GO(w)dw

Now by induction suppose for x; c(x;) is such that foc(xi) Glw)w)dw = f()C(xi) GO (w)(w)dw Now I need to
show that or x;41 c(x;+1) is well defined.

Consider ¢(xj+1) = Xj41 + €

Xit1+€ c(x;) Xit1 x1+e€ 7 Xir1+€
/ Glw)dw = / G(w)dw +/ Glw)dw + / 1-—do > / GO (w)dw
0 0 c 0

(xi) X1 w
—— —— —
el o >GO(w)
_/0 GOw)dw for some e>0 since x;.1€X

Take c(xi+1) = 1 and apply the same argument as for x;

1 c(x;) Xi+1 1 ~ 1
/ Glw)dw = / Glw)dw + / GO(w)dw + / 1- Zdw < / GO(w)dw
0 0 c(x;) Xit1 w 0

[ — ——— e
:/Oc(xi) GO(w)dw S/le‘ﬂ G(m)dm

since there must be an admissible G that induces outcome (5, D(#)) and thus G must be above the associated
isoprofit curve and since it is admissible for any x: fx ! Glw)dw < /x ! GO(w)dw
Next I show admissibility.
Admissibility with respect to G°
For x € [0, c2) by definition of ¢,
For x € [co, x1) If x1 > co then ¢y > 7t

/Ox G(w)dw = /0C1 Fo(w)dw + /;2 (1 - %) dow + /C: GO(w)dw = /Ox GO(w)dw

:/062 GYdw

since at c, the majorization constraint on GO will bind.

For x € [x1,c(xy))if x; =7t
X X ﬁ X
/0 Glw)dw = /n (1 - 5) dw > /0 GO (w)dw

by definition of c(x;) and if x; > 7t this follows from the definition of c(x1):

[ ctwna= [ cwaas [ [15)awz [ ctea
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For x € [x+1,c(xi41))

c(xiv1) c(xi) Xi+1 X Tt
/ Glw)dw = / Glw)dwdw + / GO (w)dw + / 1- Ed(u
0 0 c

. (xi) Xit+1
=[} | GOw)w —_—
1+
by def. of c(x;) > [* | GOw)dw
1+

by def. of c(x; 1)

Admissibility with respect to F
For x € [0, ¢1) since G = Fy

For x € [c1,c2) fox Glw)dw = focl Fo(w)dw + /Cf (1 - %) dw < /Ox Fo(w)dw For x € [c9, x1) if x1 > ¢o then

Cy > Tl
/OXG(CU)da) = /062 Glw)dw + /C: GO(w)dw = /OxGo(a))da) < /OxFo(a))da)

For x € [x1,c(x1))if co =7t
X X 7':( X
/ Glw)dw = / l1-—dw < / Fo(w)dw
0 0 w 0

—_———
S/OX Glw)dw
If Cy > Tl
X co X1 X 7 x X
/ G(w) = / Glw)dw +/ GO (w)dw +/ (1 - —) dw < / G(w)dw < / Fo(w)dw
0 0 co x1 w 0 0
~—_— —
:/Oxl GO (w)dw <G(w)

For x € [c(x}), xi+1)

/OxG(a)) = /Ocm) G(w)dw +/C;) GO(w)dw = /OxGo(a))dw < /OxFo(a))da)

D ——
c(x;)
=77 GO(w)dw

For x € [x;, c(x;))

/Ox Clw) = /o Gla)do + / (1 B 5) do < /0 Glw)dw < /OxPo(w)da)

:/Oxi GO(w)dw <G(w)

This establishes admissibility with respect to Fy Thus we established admissibility of G.

Consumer Surplus:

Notice that c; = p < 7t and hence total surplus is weakly higher under G than under G. Since by construction
profits are the same under G as under G, consumer surplus must be weakly higher under G O

Proof. Note that c; is increasing in 7. To see this, take two profits levels 7 < 7t that can be induced by some
admissible GP. By definition of cx(f)

c1(7) ~ c2(f)
/ Fo(w)dw + (ca(7t) — c1(77)) (1 - E) > / GO (w)dw)}
0 €2 0
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Now let é5(71) be defined as w € [m, ca(77)) such that

Tt

Ca(m)

which is well defined since 1 = % > 1 - aﬂ) for all w € [0, 1] Then since &(71) < c2(7) and GUE() is admissible

1-

= F(c1(70))

c1(7) ~ Co(m)
/ Fo(w)dw + (é2(m) — c1(7)) (1 - 3) > / GO (w)dw
0 €2 0

Then ¢y = F~ (1 - ﬁn)) =F (1 - %) = c1 So the optimal co(7r) < &>(7) which implies that c¢1() < ¢1(7)
Since c; is weakly increasing in 71, Demand in equilibrium D(G;IiE ,p*(GYE)) is weakly decreasing in 1t
meaning that total surplus is weakly decreasing in 7. Then if total surplus is decreasing in 7 since consumer
surplus is the residual of total surplus and profits, consumer surplus must weakly increase in . A O

Proofs Seller Optimal Information Design

Proof of Theorem 4. Theorem 4 follows from Lemma 9- 11. A

Lemma 9 (Seller Optimal Disclosure Rule: Full revelation at the bottom). Any outcome (GP, p) that maximizes
profits is such that:

(i) At c1 = F§(GP(p)) the stochastic dominance constraint on Fg binds:

F (G
/ Fo(t) — G(t)dt = 0
0

fFE)_(t)(G(ﬁ))
0

Proof. To show i), suppose by contradiction that G is such that Fo(t) — G(t)dt < 0. Then consider

the following alternative G?l

) Fo(t) ift <&
Gi()=1G(p) ifa<t<p
GO(t) ifpst<i

where & = min {F" (G (p))}. Let f be the smallest x > p such that

1 1
p _ 0
/0 Gfl(t)dt‘—‘/0 G~ (t)dt

Now f is well defined by the intermediate value theorem. To see this, for x € [p, 1] let D(x) be defined as
the mass difference of G7 and GO as we vary x. Notice that ¢; < p since GO(p > G(p)) and ¢1 = F5 (G(p)).
Then D(x) is given by:

b= [ cx0-co= | (k- GO + e -2)Gip - [ GO

As shown in Lemma 5 the function T(x) fa * GO(t)dt is continuous for any CDF G©. Since (x — &;)G(p) is
continuous and the composition of continuous functions is continuous, D(x) is continuous. To apply the
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intermediate value theorem, consider D(x) at the lower and upper end of its domain. For x = p we have

& p
D(;a):/0 (Fo(t)—GO(t))dt+(fJ—El)G(f7)—[ GO(t)dt

C1

& p
-Ggo _ 0
2/0 (Fo(t) -G (t))¢7lzf+/51 G(t) — G- (t)dt

& p
= / (Fo(t) — G(t))dt +/ G(t) — GO(t)dt >0
0 0

>0 by assumption since G>p1ps GO

On the other hand if x = 1
C1 1
D(1) = Fo(t) — GO(t))dt + (1 — &)Fo(31) — GO(t)d
W) /0 (Fo(t) — GOO)dt + (1 — &1)Foley) / (Ot

1 1
- /0 (Fo(t) — GO(O)dt + (1 - e1)FolE) - / Fo(t)dt

=0 since Fo>ppsG©
1
_ / Fo(é1) — Fo(t)dt <0
C1

By the intermediate value theorem there exists a p € (p, 1] such that
& p
[ Rt = [ 60wt - - coro(en
0 0

G’; MPC Fy: To show Gfl is a mean preserving contraction of F( notice that this follows by definition of
Gflz Clearly Vx € [0, c1] it is true since Gfl (x) = Fo(x). For Vx € [c1, ] it follows from the fact that

/O 1F0(t)—Gfl(t)dt+ / Fo(t) - G(p)dt > /0 " Fo(s) — Fo(t)dt = 0

where the second to last inequality holds by the definition of ci: G®(c1) = G(p) and cdfs are weakly
increasing.
For Vx € [p, 1], notice that by definition of

P p
p _ o _
/0 G (t)dt /0 GO(t)dt = 0

Thus since for any x € [p, 1] Gfl (x) = GO(x) we have

x B 1
/ Fo(t) = GL (t)dt = / Fo(t) = GO(t)dt > 0
0 0
for all x € [p, 1] (The last inequality simply follows by the fact that Fy is a MPS of G9)

G? MPS GO: To show Gfl is a mean preserving spread of G, notice f is defined to ensure this condition.
For x € [0, ¢1] the condition holds since G}, = Fy and Fy is a mean-preserving spread of G:

/X Gfl(t) - GO(t)dt = /X Fo(t) = GO(t)dt > 0
0 0
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For Vx € [c1,p]:
X 5 0 _ c1 _ . X o
/o Ge, (1) = GH(t)dt /o Fo(t)dt + (x — c1)G(p) /0 G"(t)dt
1 d xG -GO(t)d
2/0 Fo(t) t+/ () (t)dt

C1

:/Cl(Fo(t) — G(t))dt +/XG(t) - GO(t)dt
0 0

>0 since Fo>ppsG >0 since G>psG©

>0

For x € [p, p], notice that f is defined to be the smallest x > p such that D(x) = 0. Thus for any x << j

it must be that D(x) > 0. Since D(x) = /Ox Gfl(t) — GO(t)dt it follows immediately that the majorization
constraint is satisifed.
Forx € [p,1]:

x c1 p x
Py _ O _ - A 0 O¢s\ _ O
/0 Gl (t) - GO(t)dt /0 Fo(t)dt + (5 — ¢1)G(p) /0 GO(t)dt + / GO(t) — GO(t)dt

p
=D(p)
=0

The majorization constraint binds.

Thus Gfl is admissible.

Gfl induces higher profits Notice that the demand under Gfl remains constant at (1 — G(p)) and by
definition of § we have that p > p. Thus demand is constant at weakly higher prices and therefore profits

are weakly higher. A
O

Lemma 10 (Seller Optimal Disclosure Rule: Inelastic Demand). Any outcome (GP, p) that maximizes profits is
such that:

(ii) GP assigns no mass to the subinterval |[F5™(G(p)), p) A

Proof. Let p be defined as follows:

/Olel(t)dt = /Olc(t)dt

which can equivalently be written as

/ ’ Gl (t) - G(t)dt = / ’ G(t) - GP (t)dt

0 p
now f > p since G(c1) < G(p) and thus foﬁ Gfl (t)dt — foﬁ G(t)dt > 0. Gfl is a mean-preserving spread of G

and thus will also be a mean preserving spread of G°.
Let D(x) be defined as follows:

1 p x
D(x) = /0 G (t) - G(t)dt = / pPo(t)—G(t)dt+(x—;§)G(;§)— / G(t)dt
C1 p
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Again D(x) is continuous by Lemma 5. p is well defined by the intermediate value theorem: Consider D(p)
1 5 p o p
[ chio-cta = [ Fi -G+ p-pop - [ o
0 c1 p

p
> / Folt) - G(t)dt + (p — F)(G(P) - G(p))

C1

>0 since F(]>MPSG

>0

Consider D(1)
ﬁ 1
D)= | Folt)=G(t)dt +(1-5)G(H) - | G(t)dt
()/Clo() *) <p(p)/ﬁ<

1 1
- [ £ty - G+ 1= i) - [ Rt
p

C1

1 C1
<[ R-Gwdi- [ RO-cwdsa-p (G(G)-cp) - 0
0 0 —————
=0 since Fo>ppsG =0by definition of G =0 since p=min{Fq" (G(ﬁ))}

Thus by the intermediate value theorem p is well-defined.

Notice that Gfl is mean-preserving by definition of j since

1 1 1 1
p — el = -
/0 Gcl(t)dt—/o G(t)dt = ‘/0 (1 =G, (t))dt /0(1 G(t))dt

Fo >Mmps Gfl: To be admissible Gfl has to be a mean-preserving contraction of Fy. For x € [0, c1) this follows
immediately from the definition of Gfl since Gfl (x) = Fo(x) For x € [c1, P):

X ~ p x
/ Fo(t) — GE (t)dt :/ Fo(t) = Fo(t)dt + / Fo(t)dt — (x = p)G(p)
0 0

C1

X

> / Fo(p) — G(p)dt =0
p v
=G(p)

For x € [p,1):

~——
=G(t)

X N ﬁ . x .
_ P _ _ P _ P
/0 Fo(t) - G (t)dt /0 Fo(t) - G (t)dt + /,, Fo(t) - G (t)dt

= 7 Folt)~G(¢)dt by def. of p

ﬁ X
:/ Fo(t) — G(t)dt +/ Fo(t) — G(t)dt
0 p

= / xFo(t) — G(H)dt
0

>0 since FO>MPSG

>0

Gfl >mps GO: In order to show that Gfl is a mean-preserving spread of GO, it is sufficient to show that
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G’zl is a mean-preserving spread of G. For x € [0, p) it follows from definition of G’; and the fact that Fp is a
mean-preserving spread of G. For x € [, p]

X P X
Py — = - - 5G(D) —
/0 Gg, (t) = G(t)dt /0 Fo(t) — G(t)dt + (x — p)G(p) /ﬁ G(t)dt
p X
:/ Fo(t)—G(t)dt+[ G(p) — G(t)dt

0 P

ij X
. /0 Fo(t) — G()dt + / G(p) - G(p)dt

p

>0 since F0>Mp5G

>0
For x € [p, p) notice that p is defined to be the smallest x > p such that D(x) = 0 thus for any x € [p, p)

D(x) > 0 and thus by definition of D(x) this immediately implies that the majorization constraint is satisfied.
For x € [p, p, 1]

x - % p
[ 6~ = [ o - o + - p)6ip) - [ Gt = D(p) =0
0 0 p

Thus the majorization constraint binds.
G’ induces higher profits To show profits are higher, again notice that demand is unchanged and again by

definition p > p. Thus profits are higher under ny A
O

Lemma 11 (Seller Optimal Disclosure Rule (iii)). Any outcome (GP,p) that maximizes profits is such that:
(iii) GP is such at p the stochastic dominance constraint on G© binds:

/p G(t) - GO(t)dt =0
0

Proof. To show iii) suppose the majorization constraint at p did not bind:

/p G(t) - GO(t)dt > 0

0

then consider the following alternative Gz :

] Glw) ifw<p
Ghw)=1G(p) ifp<w<p
Gow) ifpsw<1

By the intermediate value theorem, there exists p € (p), 1] such that

P
/ Gl -GO(t)dt =0
0 p
since
P p
/ Gg(t) - GO(t)dt = / G(t) - GO(t)dt > 0
0 0
where the inequality follows by the assumption that the majorization constraint does not bind. For p = 1 we
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have

1

1 [4 1
P Eral® — 0 A\ _ O _ 0 —
/0 Gh(t) - GO(t)dt /O G(t) - GO(t)dt + /p G(p) - GO(t)dt < /O G(t) - GO(t)dt = 0

where the last equality follows from the fact that G and G© have the same mean. Let /i be the smallest such
value. .
Next we need to show that GZ is admissible.

Gg >mps GO : follows from the definition of p . For x € [0, p] we have,

/ﬁ GP(t) — GO(t)dt = /la G(t) - GO(t)dt > 0
o 7 0

by assumption. Then for x € [p, p] the inequality holds since p is the smallest value such that the constraint
binds.

For x € [p, 1] we have

X . fz x
Gh (t) = GO(t)dt = Git)-GOt)dt + | GO(t)-GO(t)dt =0
f / J

0 0

=0 by construction of fi

To show Fy >mps GZ notice that for x € [0, p] this is true since G is admissible:

/xFo(t) - Gg(t)dt = /xFo(t) ~G(t) >0

0 0

For x € [p, p]

X . ﬁ X x
els = - — G -
/0 Fo(t) Gﬁ(t)dt /0 Fo(t) = G(t) +/73 Fo(t) - G(p) > /0 Fo(t)-G(t) >0

For x € [p, 1] the majorization constraint holds since since Fy >pps GO:

X . ﬁ X x
rald — _ _ 0 — _ ~0
/0 Fo(t) Gﬁ(t)dt /0 Fo(t) G(t)dt+/ﬁ Fo(t) — G¥ (b)dt ‘/0 Fo(t) - G- (t)dt = 0

= [7 Fo(t)-GO(t)dt
by definition of

Thus GZ (t) is admissible and induces strictly higher profits than G rendering G suboptimal. A

Welfare Outcomes

Proof Lemma 1. Notice that it is sufficient to show that there is some G that is admissible and induces . If
there is some G, we can use Theorem 1 to obtain G € GyE.
Case 1: ™ > 7, Consider

Folw) 0<w<c
G= 1—% 1 L w<C2
Go(w) ca<sw<1

c2 ]°
show G is well defined, I need to show ¢ is well defined.

where ¢y = F§~ (1 - l) Now c3 is defined as the smallest x € [7, §] such that /01 Glw)dw = /01 G(w)dw. To
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Take ¢co = cgo

SO

1 o C2 T(SO 1
/ G(w)dw :/ Fo(w)dw + / (1 - —) dw + / GCdw
0 0 cfo C2 Cco

c2 1
— SO (@]
—/0 G (w)dw + / GY(w)dw

Cc2
—_———

>[ ; G50 by admissibility of G50

Take co s.t ¢y = (F§ (1 —n))

1 F&(1-m) 1
/ G(w)dw :/ Fo(w)dw + / (1-ndw
0 0 F& (1-m)

1
< / Fo(a))
0
Next I show admissibility of G
Admissibility of G with respect to G°:
x € [0, c1] since G = Fy
x € [c1, c2] Suppose by contradiction for some x fox Glw)dw < /Ox GO (w)dw

/0 ' Glw)dw < /0 xGO(w)dw

‘/OC1 Fo(w) + /Clx (1 - %) dw < /Ox G (w)dw

c1 c2 T(SO C2
since CDFs are increasing:/ Fo(w) + / (1 - c_) do < / GO (w)dw
0 C1 2 0

c1 c2 nso 1 1
/ Fo(a))+/ (1——)da)+/ GO</ GO (w)dw
0 c1 C2 co 0

where the last line is a contradiction to the definition of ¢; and G.
x € [c2,1] since G = G°

Admissibility of G with respect to G°:

x € [0, cq1] since G = Fy

X € [C1/C2]
X Cc1 X 7_(SO X
/ Glw)dw = / Fo(w)dw +/ (1 - —) da)leq/ Fo(w)dw
0 0 c1 C2 0

x € [c2,1] since G = G°

Case 2: T < o

Let k; be defined as all w such that 1 — Z = G© and d_G°(x # Z so that the slope of G and the isoprofit
curve is different at k;. Then (ky, k; ) are all the crossing points of G and the isoprofit curve 1 — Z Now define
G iteratively as follows:

For w € [0, k1] let G(w) = GO (w).

For w € [ki, kiy1] where i is even and so G(w) < 1 - L let G(w) = 1 - Z.
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For w € [kiy1, kir2] where (i + 1) is odd and so G(w) > 1 — Z let

1- % kivi < w < c(kivr)
Glw) =1 o
G"(w) clkis1) £ w < kiso

where c(k;;1) is defined as follows: If foki“ Glw)dw + fkk:2 1-Zdw > /Ok'l+2 GO(w)dw then let c(kiy1) = kiso

otherwise let c(ki;1) be defined the smallest w € [kj41, ki+2] such that fokm Glw)dw = /Oki+2 GO(w)dw
Take c(kiy1) = kiy1:

kit ki1 ki n ki1
/ Glw)dw = / G(w)dw +/ 1-— dw + / GO (w)dw
0 0 ki-1 @ ki

—_— >GOsince welk;_1,ki]
Zfok’;l GO(w)dw

kiv2
> / GO (w)dw
0

Where foki_l Glw)dw > fOkH GO (w)dw follows from the iterative definition of G(w).
Take c(ki+1) = ki+2.Then by assumption of this case:

k,‘+2 ki+1
/ Glw)dw < / G (w)dw
0 0

Therefore c(k;41) is well defined by the intermediate value theorem.
Next I show admissibility of G(-) wrt to GO.

Admissibility with respect to G°

For w € [0, k;] since G(w) = G°(w)

For w € [k;, ki+1] we have that

x ki X X
/ Glw)dw = / G(w)dw +/ 1- = dw > / GO (w)dw
0 0 ki w 0

Z/Oki_l GO (w)da >GOsince welk;_1,ki]

For w € [kit1, c(ki+1)] suppose by contradiction that

/D xG(w)da) < /0 xGO(a))da)

kis1 X e x
/ Glw)dw + / 1-—dw < / G (w)dw
0 kiv1 w 0

Zfok"H GO(w)dw

Then since for w € [kit1, kiy2] 1 =2 < GO(w) we have:

kiv1 kis2 I kis2
/ Glw)dw + / 1-—dow < / GO (w)dw
0 kiv1 w 0

But this contradicts the definition of c(kj41).
For w € [c(ki;1), kiro] we have that

x c(kiv1) x x
/ G(w)dw :/ Glw)dw +/ GO (w)dw :/ GO (w)dw
0 0 c(kiv1) 0

(kiv1)
=Y GO (w)dw
by def. of c(k;41)
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Admissibility with respect to Fy

I will show admissibility with respect to Fy by showing that GB? is a mean preserving spread of G.
For w € [0, k1] since G(w) = G°(w).

For w € [k1, ks] since

X k1 x p k1 x 7.(BO
/ Glw)dw = / GO (w)dw +/ 1-—dw < / GEO(w)dw +/ 1-—
0 0 3 @w 0 k1 w

= / GBO(w)dw

0

where the inequality of the first term follows from admissibility of GBO(w) and on the second terms it follows

from the fact that 72© < 7. The last equality holds since the smallest w where 1 — ”:;)O > G© is smaller than

k.
For w € [kit+1, c(kit+1)] we have that

x ki X
/ Glw)dw = / ] Glw)dw + / 1- Zdo
0 0 kj w

]

Now notice that for any k; we have that c(k;) < c(kBO)since1 - X <1 - i
] [

x k; X X
/ Glw)dw = / G(w)dw +/ (1 - E)clcu < / GPO(w)dw
0 0 ki w 0
S/Ox GBO(w)dw S(l—#)

where the inequality on the first term follows by the inductive hypothesis. For w € [c(ki+1), ki+2] we have

that
X c(kj) X b4 X
/ G(w)dw = / G(w)dw + / GO (w)dw = / GO(w)dw < / GBO(w)
0 0 c(kj) 0 0

This follows by definition of c(k;).
For w € [c(k;), ki+1] we have that

/0 Gla)do = /0 Y Gl + /k,.x(:@dw ) /o e

—_——
<[5 GBO(w)dw <(1-227)
where the inequality on the first term follows by the inductive hypothesis. and the last equality follows
from the fact that 1 — % >1-Z2 > G(w) since w € [k;, ki41] and therefore GBO =1- %.
Case 3: 71 € (nfo, nGo) Consider G(w) defined as follows:

GOow) 0<w<cy
G(w) =4Fo(ca) c1<w<cy
Gow) ca<sw<1

where ¢ is defined as the smallest w such that1 - = = Fo(w) which is well defined since 7 > mr,. Now let

c1 be defined such that fol Glw)dw = /01 GO(w)dw. c; is well- defined by the intermediate value theorem.
Consider c¢; = (G®)(Fy(cz)). Then:

/01 Glw)dw = /061 GO(w)dw + /62 GO(c1)dw +/1Go(a))da) < /01 G(w)dw

C1 c2
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where we know that c; = (G°)(Fy(cz)) < co since © > mco and thus GO > (1 - x.
Consider ¢; = 0. Then:

/OlG(w)dw = /OC2 FO(C2)+[21 GO (w)dw > /Olpo(w)da, - /OlGo(a))da)

—————
/C; Fo(w)dw

Then by the intermediate value theorem c; is well-defined.
Admissibility with respect to G°

x € [0,c1) U [ca,1] since G = G°

x € [c1, ¢2) Suppose by contradiction that

/ Glpo < / " 60w
/0C1 Gow)dw + /xPO(Cz)dw < /Ox GO (w)dw

C1

Cc1 c2 C2
/ GO (w)dw +/ Fo(co)dw < / GO (w)dw
0 c1 0

which contradicts the definition of ¢;
Admissibility with respect to F
x €[0,c1)U|ca, 1] since G = G°

X € [Cl/CQ)
1 Cc2 1 Cc2 1
/ G(a))da):+/ FO(CQ)da)/ G (w)dw 2/ Fo(w)da)+/ Fo(w)dw

Then we would have:

Lemma 2. (i) At p™** the majorization constraint on G° binds

Notice that by admissibility of G it must be that fp ,lm Glw)dw < /p }mx GO(w)dw Consumer Surplus is given

by:

1 1
/ (w—p™*)dG(w) = / (1-G(w))dw
P

max max
p

Thus consumer surplus is minimized by letting the majorization constraint on G© bind. To show this I will
first establish that for any G that minimizes consumer surplus for a given level of profits it must be that
p™¥ > k, where k is the largest x € [0, 1] such that G°(w) = 1 - Z. Consider some G such that this is not
the case and let G be defined as

Glw) 0<sw<c
G(w)=4{G(k) k<w<pmx
Go(w) P"*<w<1

where p™?* is defined as w € [c, 1] such that G(c) = 1 - Z and c is defined as w € [k, G (1 — )] such that
fol Glw)dw = /01 G(w)dw which is well defined by the intermediate value theorem:
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Take p"** = k Then we have that

1 k
/ G(w)dw = / Glw)dw
0 0
since G is admissible.

Take p"** = G~ (w)(1 — ). Then we have that

ﬁ”’lﬂ){ 1

/01 Glw)dw = /0 Glw)dw + /ﬁmu G(p"™ GO (w)dw < /01 Glw)dw

Now we need to show that the G is admissible.

Admissibility with respect to F

For x € [0, p™*) since G(w) = G(w)

For x € [c, p""¥) we have that [ G(w)dw = [, G(o)dw + J; e G(O)dw < [Y G(o)dw < [ Fo(w)dw
For x € [p™**,1) we have that /xl Glw)dw = fxl GO(w)dw > /xl Fo(w)dw

Admissibility with respect to G°

x € [0, c] since fox Glw)dw = fox Glw)dw

For x € [c, p™**) Suppose that

/0 xé(w)dw < /O xGO(a))da)

/G(w)da)+/ 1—Eda)</ GO (w)dw
0 c w 0

Then since ¢ > k:

Hmax Hmax

c p n pme
/ Glw)dw +/ 1-—dw < / G (w)dw
0 c w 0

which contradicts the definition of c. For x € [p"*, 1) we have that fx ' G(w)dw. Thus we know that p™** > k
With this T will show that at p™** the majorization constraint binds. For any G such that this constraint does
not bind, we can find an admissible G that makes the constraint bind. Take some G where at p™** we have
that the majorization constraint is slack. Then take:

Glw) 0<w<p™*
é(w) ={1= % pr < @ < prex
GO(a)) — ﬁmux <w<l1

where p™%* is defined as w € [p™"*, 1] such that /01 Glw)dw = fol G(w)dw which is well defined by the
intermediate value theorem:
Take p"** = p™** Then we have that

/01 G(w)dw = /OP"“’X G(w)dw + /}gm1 GO(w)dw > /01 Clw)o

since the majorization constraint of G on G© is slack at p™*.
Take p""* = 1 Then we have that

[ e

by definition of the isoprofit curve. All that is left is to show that G is admissible.

max
P

1 1
Glw)dw + / 1- gGO(w)d(u < /0 G(w)dw
p

max
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Admissibility with respect to F

For x € [0, p™**) since G(w) = G(w) ‘

For x € [p™*, j"%%) we have that [* G(o)dw = [/ G(w)dw + fp e 1= Zdo < [ G(w)dw < [ Fo(w)dw
For x € [p™**,1) we have that /xl Glw)dw = fxl GO(w)dw > /xl Fo(w)dw

Admissibility with respect to G°

x € [0, p™*¥] since fox Glw)dw = /Ox Glw)dw

For x € [p™**, p™*) Suppose that

Hmax 1

T p
/ Glw)dw = / 1- Zdw +/ GO (w)dw
x x w pmax
——

—_————
<G(w)
/f,}nux Glw)dw
pmax 1
we have ’chat/x1 Glw)dw = /xp 1- gda) +/ GO (w)dw < fxl Gw(w)dw O
pmux
v ~—_—————
<G(w)

Jmax Gl@)dw

Proof. By Lemma 2, let p™#*(1t) denote the price that induces CS(n). Let p™ = ¢y where ¢ is defined as
the ¢y of GYE in Theorem 1. Then p™ induces CS(n).
Fix any target CS(m) € [CS(m), CS(m)] and define

a €[0,1] suchthat CS(n)=aCS(n)+ (1—-a)CS(n).

Consider the mixed pricing strategy that sets p™#*(rt) with probability « and p™® with probability 1 — a.
Consumer surplus is linear in the seller’s randomization over prices (it is an expectation over the realized
price), so the induced expected consumer surplus equals

a CS(n) + (1 — a) CS(n) = CS(n).

Hence any level in [CS(m), CS(m)] can be induced. O

Equivalence of Original and Relaxed Program

Proof Lemma 4 . Consider uP ~ GP and u® ~ GO where GP is a mean-preserving spread of G°. Then:

uo =E(E(u" | u°))

1
= / [LlDdFHD“lO
0

where Fp| 0 is the conditional distribution of uP given u©. If we think of G® and GP as lotteries with

uP|p
outcomes @ and p© respectively, then the conditional distribution function tells us how different branches of
the lottery GP are combined into one branch of the lottery G©. Now 1P is the two stage lottery, where the first
stage describes the probability of some posterior g° and the second stage describes the probabilities assigned
to different valuations. We can construct 7° from 7 using F up|uo to ensure that 7P is a mean-preserving
spread of 70. Define ¢© as follows:

1
qO:/O quFquo
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where f,p,0 = f,p|,,0 P (qP | E(gP) = uP) and

Zibiot) whenever lim F (1) lim F (1)
=D D|40 = D|,0
fupjuo = 917 t—(gP)r 1 19 t—(gP)- 19
Kol lim Fopj,o(t) = lim Fgpo(t) otherwise
t—(gD)* q-1q t—(qP)- q-1q

Let 7(4°) be defined by the posterior mean distribution GO:
©(9°) = g°(1°)

such that E(q°) = u©'2, where again

9G20) whenever lim GO(t) = lim GO(t)
0(,,0 ou° t—(u0)* t—(u0)"
§ (") = ¢ g
lim GO(t)- lim GO(t) otherwise
t—(uO)* t—(u0)-

Think of 7© as a four stage lottery, where the first stage is pinned down by G°(u°) and the second stage
tells us how we randomize over posterior means u to obtain that u© given by fup|uo, the third stage tells us
how we randomize over all posteriors gP that induce mean yD , precisely ™2 (qP | E(gP) = yD ) and the last

stage simply corresponds to the posterior gP. Let by construction:
E(4” 1) = / qPdz(q" | 4°)

:/quFquO
:qo

where the last line follows from the construction of §©. The second to last line follows from the fact that each
posterior © induces a different posterior mean p©. Then 7(g” | g°) = 7(4P | 1©) and we can consequently
think of 7(qP | u°) as the three-stage lottery derived from 7© after the realisation of the first stage. The
probability of P is then given by the probability that mean pP realises in the second stage given by fupjuo
and the probability that given this mean P the posterior g is selected: t2(gP | E(¢qP) = uP), as described
by the third stage. So we have that t°(q" | 4°) = fwaoTD(qD | E(gP) = uP) = fop1q0 A O

12This is well defined, since by construction of ° there is only one q© with mean p°
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